Generaciones de Computadoras
Primera Generación
La primera generación de computadoras abarca desde el año 1940 hasta el año 1952, aunque realmente estas fechas son de las máquinas comerciales que se podrían llamar la primera generación de computadora.
- Estaban construidas con electrónica de válvulas de vacío.
- Se programaban en lenguaje máquina.1
La primera generación de computadoras y sus antecesores, se describen en la siguiente lista de los principales modelos de que constó:
- 1938 el Z1 primera totalmente máquina electro-mecánica, los componentes mecánicos daban bastantes problemas. Las Z fueron fabricadas por el alemán Konrad Zuse, cuyo trabajo fue menospreciado por haberse producido en Alemania durante la Segunda Guerra Mundial.2
- 1939 el Z2, para mejorar usó por primera vez relés, fue una máquina intermedia entre la Z1 y la Z3.
- 1941 el Z3, primera máquina completamente operativa usando relés.
- 1944 ENIAC. Considerada hasta hace unos años como la primera computadora digital electrónica en la historia.3 No fue un modelo de producción, sino una máquina experimental. Tampoco era programable en el sentido actual. Se trataba de un enorme aparato que ocupaba todo un sótano en la universidad. Construida con 18.000 tubos de vacío, consumía varios kW de potencia eléctrica y pesaba algunas toneladas. Era capaz de efectuar cinco mil sumas por segundo. Fue hecha por un equipo de ingenieros y científicos encabezados por los doctores John W. Mauchly y J. Presper Eckert en la universidad de Pensilvania, en los Estados Unidos.
- 1945 el Z4 fue completado, rediseñado completamente tras perderse los planos y piezas de las anteriores Z durante los bombardeos aliados de Berlín. Fue la primera máquina en ser vendida comercialmente en 1950.
- 1949 EDVAC. Segunda computadora programable. También fue un prototipo de laboratorio, pero ya incluía en su diseño las ideas centrales que conforman las computadoras actuales.
- 1951 UNIVAC I. Considerada la primera computadora comercial en ser vendida, aunque se le adelantó la británica Feranti Mark I por unos meses, y nunca se tuvo en cuenta la Z4 que se adelantó casi un año. Los doctores Mauchly y Eckert fundaron la compañía Universal Computer (Univac), y su primer producto fue esta máquina. El primer cliente fue la Oficina del Censo de Estados Unidos.
- 1953 IBM 701. Para introducir los datos, estos equipos empleaban tarjetas perforadas, que habían sido inventadas en los años de la revolución industrial (finales del siglo XVIII) por el francés Joseph Marie Jacquardy perfeccionadas por el estadounidense Herman Hollerith en 1890. La IBM 701 fue la primera de una larga serie de computadoras de esta compañía, que luego se convertiría en la número uno, por su volumen de ventas.
- 1954 - IBM continuó con otros modelos, que incorporaban un mecanismo de almacenamiento masivo llamado tambor magnético, que con los años evolucionaría y se convertiría en el disco magnético.
- 1955 - Zuse Z22. La primera computadora de Konrad Zuse aprovechando los tubos de vacío.
Las computadoras que se diseñaron y construyeron entonces se denominan a veces "primera generación" de computadoras. La primera generación de computadoras eran usualmente construidas a mano usando circuitos que contenían relés y tubos de vacío, y a menudo usaron tarjetas perforadas (punched cards) o cinta de papel perforado (punched paper tape) para la entrada de datos [input] y como medio de almacenamiento principal (no volátil). El almacenamiento temporal fue proporcionado por las líneas de retraso acústicas (que usa la propagación de tiempo de sonido en un medio tal como alambre para almacenar datos) o por los tubos de William (que usan la habilidad de un tubo de televisión para guardar y recuperar datos).
En 1936 Konrad Zuse empezó la construcción de la primera serie Z, calculadoras que ofrecen memoria (inicialmente limitada) y programabilidad. Las Zuses puramente mecánicas, pero ya binarias, la Z1 terminada en 1938 nunca funcionó fiablemente debido a los problemas con la precisión de partes. En 1937, Claude Shannon hizo su tesis de máster en MIT que implementó álgebra booleana usando relés electrónicos e interruptores por primera vez en la historia. Titulada "Un Análisis Simbólico de Circuitos de Relés e Interruptores" (A Symbolic Analysis of Relay and Switching Circuits), la tesis de Shannon, esencialmente, fundó el diseño de circuitos digitales prácticos.
La máquina subsecuente de Zuse, la Z3, fue terminada en 1941. Estaba basada en relés de teléfono y trabajó satisfactoriamente. Así, la Z3 fue la primera computadora funcional controlada mediante programas. En muchas de sus características era bastante similar a las máquinas modernas, abriendo numerosos avances, tales como el uso de la aritmética binaria y números de coma flotante. El duro trabajo de reemplazar el sistema decimal (utilizado en el primer diseño de Charles Babbage) por el sistema binario, más simple, significó que las máquinas de Zuse fuesen más fáciles de construir y potencialmente más fiables, dadas las tecnologías disponibles en ese momento.
Esto es a veces visto como la principal razón por la que Zuse tuvo éxito donde Babbage falló; sin embargo, aunque la mayoría de las máquinas de propósito general de la actualidad continúan ejecutando instrucciones binarias, la aritmética decimal es aún esencial para aplicaciones comerciales, financieras, científicas y de entretenimiento, y el hardware de coma flotante decimal está siendo agregado en los dispositivos actuales (el sistema binario continúa siendo usado para direccionamiento en casi todas las máquinas) como un apoyo al hardware binario.
Se hicieron programas para las Z3 en cintas perforadas. Los saltos condicionales eran extraños, pero desde los 1990s los puristas teóricos decían que la Z3 era aún una computadora universal (ignorando sus limitaciones de tamaño de almacenamiento físicas). En dos patentes de 1937, Konrad Zuse también anticipó que las instrucciones de máquina podían ser almacenadas en el mismo tipo de almacenamiento utilizado por los datos –la clave de la visión que fue conocida como la arquitectura de von Neumann y fue la primera implementada en el diseño Británico EDSAC (1949) más tarde–.
Zuse también diseño el primer lenguaje de programación de alto nivel Plankalkül en 1945, aunque nunca se publicó formalmente hasta 1971, y fue implementado la primera vez en el 2000 por la Universidad de Berlín, cinco años después de la muerte de Zuse.
Zuse sufrió retrocesos dramáticos y perdió muchos años durante la Segunda Guerra Mundial cuando los bombarderos británicos o estadounidenses destruyeron sus primeras máquinas. Al parecer su trabajo permaneció largamente desconocido para los ingenieros del Reino Unido y de los Estados Unidos. Aun así, IBM era consciente de esto y financió su compañía a inicios de la post-guerra en 1946, para obtener derechos sobre las patentes de Zuse.
En 1940, fue completada la Calculadora de Número Complejo, una calculadora para aritmética compleja basada en relés. Fue la primera máquina que siempre se usó remotamente encima de una línea telefónica. En 1938, John Vincent Atanasoff y Clifford E. Berry de la Universidad del Estado de Iowa desarrollaron la Atanasoff Berry Computer (ABC) una computadora de propósito especial para resolver sistemas de ecuaciones lineales, y que emplearon condensadores montados mecánicamente en un tambor rotatorio para memoria. La máquina ABC no era programable, aunque se considera una computadora en el sentido moderno en varios otros aspectos.
Durante la Segunda Guerra Mundial, los británicos hicieron esfuerzos significativos en Bletchley Park para descifrar las comunicaciones militares alemanas. El sistema cypher alemán (Enigma), fue atacado con la ayuda con la finalidad de construir bombas (diseñadas después de las bombas electromecánicas programables) que ayudaron a encontrar posibles llaves Enigmas después de otras técnicas tenían estrechadas bajo las posibilidades. Los alemanes también desarrollaron una serie de sistemas cypher (llamadas Fish cyphers por los británicos y Lorenz cypers por los alemanes) que eran bastante diferentes del Enigma. Como parte de un ataque contra estos, el profesor Max Newman y sus colegas (incluyendo Alan Turing) construyeron el Colossus. El Mk I Colossus fue construido en un plazo muy breve por Tommy Flowers en la Post Office Research Station en Dollis Hill en Londres y enviada a Bletchley Park.
El Colossus fue el primer dispositivo de cómputo totalmente electrónico. El Colossus usó solo tubos de vacío y no tenía relés. Tenía entrada para cinta de papel (paper-tape) y fue capaz de hacer bifurcaciones condicionales. Se construyeron nueve Mk II Colossi (la Mk I se convirtió a una Mk II haciendo diez máquinas en total). Los detalles de su existencia, diseño, y uso se mantuvieron en secreto hasta los años 1970. Se dice que Winston Churchill había emitido personalmente una orden para su destrucción en pedazos no más grandes que la mano de un hombre. Debido a este secreto el Colossi no se ha incluido en muchas historias de la computación. Una copia reconstruida de una de las máquinas Colossus esta ahora expuesta en Bletchley Park.
Segunda Generacíón
La
segunda generación de las
computadoras reemplazó las
válvulas de vacío por los
transistores. Por eso las computadoras de la segunda generación son más pequeñas y consumen menos electricidad que las de la anterior. La comunicación con estas nuevas computadoras es mediante lenguajes más avanzados que el lenguaje de máquina, los cuales reciben el nombre de “lenguajes de alto nivel".
Las características más relevantes de las computadoras de la segunda generación son:
- 1964: IBM vendió por un valor de 1 230 000 dólares su primer sistema de disco magnético, el RAMAC (Random Access Method of Accounting and Control). Usaba 50 discos de metal de 61 cm, con 100 pistas por lado. Podía guardar 5 megabytes de datos, con un coste de 10 000 USD por megabyte.
- 1959: IBM envió el mainframe IBM 1401 basado en transistores, que utilizaba tarjetas perforadas. Demostró ser una computadora de propósito general y 12 000 unidades fueron vendidas, haciéndola la máquina más exitosa hasta ese momento. Tenía una memoria de núcleo magnético de 4000 caracteres (después se extendió a 16 000 caracteres). Muchos aspectos de sus diseños estaban basados en el deseo de reemplazar el uso de tarjetas perforadas, que eran muy usadas desde los años 1920 hasta principios de la década de 1970.
- 1960: IBM lanzó el mainframe IBM 1620 basada en transistores, originalmente con solo una cinta de papel perforado, pero pronto se actualizó a tarjetas perforadas. Probó ser una computadora científica popular y se vendieron aproximadamente 2000 unidades. Utilizaba una memoria de núcleo magnético de más de 60 000 dígitos decimales.
- 1962: Se desarrolla el primer juego de ordenador, llamado Spacewar!.12
- DEC lanzó el PDP-1, su primera máquina orientada al uso por personal técnico en laboratorios y para la investigación.
- 1964: IBM anunció la serie 360, que fue la primera familia de computadoras que podía correr el mismo software en diferentes combinaciones de velocidad, capacidad y precio. También abrió el uso comercial de microprogramas, y un juego de instrucciones extendidas para procesar muchos tipos de datos, no solo aritmética. Además, se unificó la línea de producto de IBM, que previamente a este tiempo tenía dos líneas separadas, una línea de productos “comerciales” y una línea “científica”. El software proporcionado con el System/350 también incluyó mayores avances, incluyendo multiprogramación disponible comercialmente, nuevos lenguajes de programación, e independencia de programas de dispositivos de entrada/salida. Más de 14 000 unidades del System/360 habían sido entregadas en 1968.
Tercera Generación
A partir de esta fecha, empezaron a empaquetarse varios
transistores diminutos y otros componentes electrónicos en un solo chip o encapsulado, que contenía en su interior un circuito completo: un
amplificador, un
oscilador, o una
puerta lógica. Naturalmente, con estos chips (circuitos integrados) era mucho más fácil montar aparatos complicados: receptores de
radio o
televisión y
computadoras.
En 1964,
IBM anunció el primer grupo de máquinas construidas con circuitos integrados, que recibió el nombre de
serie Edgar.
Estas computadoras de tercera generación sustituyeron totalmente a los de
segunda, introduciendo una nueva forma de programar que aún se mantiene en las grandes computadoras actuales.
Esto es lo que ocurrió en (1964-1971) que comprende de la tercera generación de computadoras.
Menor consumo de energía eléctrica
Apreciable reducción del espacio que ocupaba el aparato
Aumento de fiabilidad y flexibilidad
Teleproceso
Multiprogramación
Renovación de periféricos
Se calculó π (número Pi) con 500 mil decimales.
Se empezaron a utilizar los circuitos integrados.
- Máquinas relevantes
- IBM 360: esta empresa marcó el comienzo de esta generación el 7 de abril de 1964, con el lanzamiento del IBM 360, con la tecnología SLT integrada. Causó tal impacto que se fabricaron más de 30.000 unidades.
- CDC 6600: también en 1964 la empresa Control Data Corporation, presentó el CDC 6600, que se consideró el computador más poderoso de la época, ya que podía ejecutar unos 3.000.000 de instrucciones por segundo.
- Minicomputadoras, no tan costosas y con gran capacidad de procesamiento. Algunas de las más populares fueron la PDP-8 y la PDP-11.
Cuarta Generación
La denominada
Cuarta Generación es el producto del microprocesador de los circuitos electrónicos. El tamaño reducido del microprocesador de chips hizo posible la creación de las computadoras personales (PC). Hoy en día las tecnologías LSI (integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un microchip. Usando VLs, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo. Hicieron su gran debut las
microcomputadoras.
Hizo que sea una computadora ideal para uso “personal”, de ahí que el término “PC” se estandarizara y los clones que sacaron posteriormente otras empresas fueron llamados “PC y compatibles”, usando procesadores del mismo tipo que las IBM , pero a un costo menor y pudiendo ejecutar el mismo tipo de programas. Existen otros tipos de microcomputadoras , como la Macintosh, que no son compatibles con la IBM, pero que en muchos de los casos se les llaman también “PC”, por ser de uso personal. El primer microprocesador fue el Intel 4004, producido en 1971. Se desarrolló originalmente para una calculadora, y resultaba revolucionario para su época. Contenía 2300 transistores en un microprocesador de 4 bits que sólo podía realizar 60 000 operaciones por segundo.
Microprocesadores[editar]
Microprocesador Intel 8008.
El primer microprocesador de 8 bits fue el
Intel 8008, desarrollado en 1972 para su empleo en terminales informáticos.
1 El Intel 8008 contenía 3300 transistores. El primer microprocesador realmente diseñado para uso general, desarrollado en 1974, fue el Intel 8080 de 8 bits, que contenía 4500 transistores y podía ejecutar 200 000 instrucciones por segundo. Los microprocesadores modernos tienen una capacidad y velocidad mucho mayores.
Entre ellos figuran el Intel [ibm, con 5,5 millones de transistores; el UltraSparc-II, de Sun Microsystems, que contiene 5,4 millones de transistores; el PowerPC 620, desarrollado conjuntamente por Apple, IBM y Motorola, con siete millones de transistores, y el Alpha 21164A, de Digital Equipment Corporation, con 9,3 millones de transistores. El Microprocesador, es un circuito electrónico que actúa como unidad central de proceso de un ordenador, proporcionando el control de las operaciones de cálculo.
RORO y sus microprocesadores también se utilizan en otros sistemas informáticos avanzados, como impresoras, automóviles o aviones. En 1995 se produjeron unos 4000 millones de microprocesadores en todo el mundo. El microprocesador es un tipo de circuito sumamente integrado. Los circuitos integrados, también conocidos como microchips o chips, son circuitos electrónicos complejos formados por componentes extremadamente pequeños formados en una única pieza plana de poco espesor de un material conocido como semiconductor.lm
Los microprocesadores modernos incorporan hasta 10 millones del transistores (que actúan como amplificadores electrónicos, osciladores o, más a menudo, como conmutadores), además de otros componentes como resistencias, diodos, condensadores y conexiones, todo ello en una superficie comparable a la de un sello postal. Un microprocesador consta de varias secciones diferentes.
Los más complejos contienen a menudo otras secciones; por ejemplo, secciones de memoria especializada denominadas memoria caché, modernos funcionan con una anchura de bus de 64 bits: esto significa que pueden transmitirse simultáneamente 64 bits de datos. Un cristal oscilante situado en el ordenador proporciona una señal de sincronización, o señal de reloj, para coordinar todas las actividades del microprocesador.